自动车床加工正朝着高速方向发展。在高速加工中,一方面由于进给速度很快,为充分利用机床的有效工作行程(一般只有数百毫米),必须要求各坐标运动部件能在极短的时间内达到给定的速度并能在高速行程中瞬间停准。另一方面,由于高速加工的切削时间缩短,换刀间隔缩短,机床运动启停频繁,因此,缩短运动部件启停的过渡过程时间,也将具有重要意义。上述两方面要求归结到一点,就是要求机床运动具有极短的加减速过渡过程。然而,如果仅从时间上去考虑缩短过渡过程,而不对机床的加减速动态过程进行合理的控制,必将给机床结构带来很大冲击,轻者将使其难以正常工作,重者将损伤机床零部件。因此,如何保证在机床运动平稳的前提下,实现以过渡过程时间zui短为目标的*加减速控制规律,使机床具有满足高速加工要求的优良加减速特性,已成为现代
自动车床系统研究开发中亟待解决的关键问题之一。
为解决此问题,一方面要求
自动车床系统能因机而异、因时而异来动态确定加、减速控制规律(即动态选择或生成与具体情况相适应的加减速曲线)。另一方面,需在控制系统中采用特殊方法来实现这种动态规律(多变的加、减速曲线)。显然,传统
自动车床系统采用的固定加减速控制方法是无法实现这一要求的。为此,本文根据开放式结构控制的思想,提出一种可根据任意曲线对
自动车床的运动进行自动加减速控制的方法。这种方法将自动加减速控制由传统的固定模式推向新的柔性模式,为有效提高
自动车床的动态性能探索出一条新的途径。
1、柔性加减速控制的基本思想
传统
自动车床系统中,一般由系统程序直接实现特定的(如直线、指数曲线等)自动加减速控制功能。在这一方式下,要对系统的加减速特性作大的改变或增加新的加减速控制规律必须修改
自动车床系统程序,因而普通用户无法按自己的意愿使
自动车床具有*的加减速性能。与此相反,本文提出的柔性加减速控制方法则采用数据库的原理,将加减速控制分为加减速描述与实施两部分,并将加减速描述与系统程序相分离。这样,若要改变系统的加减速控制规律只需独立地修改加减速描述数据,而不需要修改
自动车床系统程序,从而为用户提供一种可按自己的实际情况方便地改变系统的加减速性能的新方法。在这一新的控制方式下,
自动车床系统的自动加减速控制功能将具有高度柔性并对用户*开放。
为做到加减速的计算和控制过程与加减速曲线形状无关,本文以实时数据库的形式来独立存储加减速曲线。即将给定的加、减速曲线或自动生成的加、减速曲线进行数字化处理,得到其离散形式,并将其以数表形式动态存放于
自动车床系统内的加、减速曲线库中。在
自动车床系统软件中,则设计一条通用的与加减速数据库内容(曲线形状)无关的控制通道,由其独立完成加减速计算和轨迹控制。该方法的实现原理如图1所示。
图中,加减速曲线库中存放着用户给定或系统自动生成的加减速曲线。系统运行时,首先根据数据处理模块给出的有关控制数据和来自检测反馈环节的机床实际运动数据进行加减速分析。如需加减速控制,则通知曲线选择模块从加减速曲线库中选出zui合适的加减速曲线,并发出加减速控制指令给加减速计算模块,由其根据所选定的加减速曲线计算出当前采样周期的瞬时速度。进一步由插补轨迹计算模块生成刀具运动轨迹,并发出刀具运动指令送往驱动装置,zui后由驱动装置以希望的加减速控制规律驱动机床运动部件运动,从而使机床运动的动态特性达到*。
下面具体讨论该环境下自动加减速的实现过程。
2、柔性自动加速控制
设给定的加速曲线(解析曲线或非解析曲线)如图2所示,现将其作为样板以数表的形式存放于加减速曲线库中。图中,fd为加速过程进给速度总改变量(以下将其称为样板速度差),td为加速过程所需时间(样板加速时间)。根据加速曲线数表实现自动加速控制的过程如下:
首先,根据
自动车床加工的初始进给速度F1,加速过程结束后的希望进给速度F2,求出加速过程速度差FD=F2-F1,并据此计算出实际速度差与样板速度差的比值
K=FD/fd (1)
然后,根据加速开始到当前时刻所经过的采样周期个数n,计算出查表时间
tn=T.n/K (2)
式中 T--采样周期
根据tn查加速曲线表可得样板速度增量fn。由此可计算出经过n个插补周期后实际速度的改变量
ΔFn=fn.K (3)
进一步,将求出的n周期速度改变量ΔFn代入下式,求出当前采样周期的实际进给速度
Fi=F1+ΔFn (4)
zui后,根据所求得的Fi计算当前采样周期中插补直线段的长度,并据此进行轨迹计算,即可实现满足图2曲线要求的自动加速控制。
3、柔性自动减速控制
设给定的减速曲线如图3所示,如同加速控制一样将其作为样板以数表的形式存放于加减速曲线库中。根据减速曲线数表实现自动减速控制的过程如下:
首先,根据
自动车床加工的初始进给速度F1,减速过程结束后的希望进给速度F2,求出减速过程速度差FD=F1-F2。
然后,按照与加速控制相同的过程由式(1)、(2)求出查表时间tn,并查减速曲线表得样板速度增量fn。由此可计算出经过n个插补周期后实际速度的改变量
ΔFn=FD-fn.K (5)
进一步,将求出的n周期速度改变量ΔFn代入下式,求出当前采样周期的实际进给速度
Fi=F1-ΔFn (6)
zui后,根据Fi计算当前采样周期中插补直线段的长度,并据此进行轨迹计算,即可实现满足曲线要求的自动减速控制。
对于自动减速控制,减速前还需预测减速点,以决定何时开始减速。确定减速点的依据是减速距离s,其计算公式为
(7)
式中 F1、F2--当前进给速度和减速过程结束后的进给速度
fd--减速曲线样板速度差
td--样板减速时间
sd--样板减速距离
计算实际减速距离s时,所需的样板减速距离sd可通过下式以离线方式预先求出,并存储于加减速数据库中。
(8)
式中 fi--样板减速曲线f(t)的离散取值
Δt--数值积分的时间增量